
SCALING CODE ANALYSIS 
ACROSS AN ENTERPRISE
FLORIAN NOEDING

PRINCIPAL SECURITY ARCHITECT @ ADOBE



ABOUT ME

• Principal Security Architect @ Adobe
Software Engineer à Security Researcher

à Security Strategy

• Fun fact: I bake my own German style bread
recipe on my blog https://florian.noeding.com

https://florian.noeding.com/


SECRETS IN SOURCE CODE (SISC)

• Detect credentials in source 
code or repositories



SOFTWARE COMPOSITION ANALYSIS (SCA)

•Create inventory of 3rd party 
dependencies
•Enables look-up of CVEs affecting 

these libraries

https://xkcd.com/2347/

https://xkcd.com/2347/


STATIC APPLICATION SECURITY TESTING (SAST)

• Looks for vulnerable code patterns or dataflows
• Identifies 1st party vulnerabilities

source

sink

mixing code and data 
without output encoding



CHALLENGE

• Hundreds of Products across desktop, 
mobile, web, …

• Diverse tech stacks

• 12 programming languages 
make up 80% of our code

• Many more frameworks

• Multiple SCMs

• 100k+ repositories as primary scope

• On average 30k scan events per day



DESIGN, ROLLOUT, IMPACT



DESIGN PRINCIPLES

Great Developer Experience as the key goal to ensure acceptance:

• Integrate deeply into developer workflow

• Provide timely, relevant and actionable feedback (shift-left!)

• Carefully balance noise and risk reduction

• Single pane of glass into source code related findings

Goal: pragmatic risk reduction instead of zero known vulnerabilities.



PRIMARY PROCESS
write 
code

test 
locally

commit & 
push

create 
pull 

request

gather 
feedback

merge

Scan requested

Feedback
<= 5 min + build

Adversary
Intelligence

Security
as

Code



FEEDBACK LOOPS

Ticketing for 
enforcement

Critical risks only

Challenge: Attribution to project often non-trivial

Custom dashboard
All findings on any branch

Challenge: not yet widely adopted by engineers

Metrics driven 
security campaigns

only a few specific risks

Inline feedback on 
pull requests

Findings in changed files only (important!), very few exceptions



SCAN TOOL SELECTION

Easy to roll-
out

Finds 
important 

vulnerabilities

Developer 
friendly 
output

Fast enough Customizable



SCOPE

All 
Repositories

Known SCMs

Organization 
owned repos

All scanners

User owned 
repos

Secrets only future

Known 
Unknowns

out of scope for Kodiak

Shadow IT

Leaks on 
public 

platforms
Secrets only

>= 98% onboarded



ROLLOUT

Security org
Friendly 

Engineering 
Teams

Non-big 
repositories

All 
repositoriesScope

Secrets SCA SAST Repository 
settings IaCScanners

Ongoing feedback 
for Kodiak team



OUTCOMES 2023

300,000 findings fixed
nudging only – zero enforcement



RISK PRIORITIZATION



ADVERSARY MODEL
HIGHLY SIMPLIFIED

Security 
Researchers

• Various 
motivations

• generally 
friendly

• no 0-day leaks

eCriminals

• Often financially 
motivated

• Repeatable, 
scalable 
exploitation

Nation States

• Operations with 
targeted 
outcomes

• Hard to predict

à Use to identify gaps in 
program

à Fix easy to exploit or widely 
deployed vulnerabilities first

à Defense in depth



Public and widely shared internal repos

Easy to abuse, particularly cloud credentials

Active and long-lived

Everything else
• consider accepting revoked credentials in historical commits

SISC – RISK REDUCTION STRATEGY
MOST BREACHES INVOLVE LEAKED OR STOLEN CREDENTIALS



Exploited in the Wild
• CISA’s Known Exploited Vulnerability (KEV) catalog

Exploit Available
• Various Intelligence Feeds

Likely to be exploited
• First's Exploit Prediction Scoring System (EPSS)

Everything else
• Severity (CVSS), Customer & Compliance Expectations

SCA – RISK REDUCTION STRATEGY
MANY BREACHES START WITH AN OUT-OF-DATE SYSTEM

Future:

• Filter out unreachable 
CVEs

• Use contextual data

SBOM Transparency:

à Fix based on CVSS



Exploited in the Wild

Exploit Available

Likely to be exploited

Everything else

SAST – RISK REDUCTION STRATEGY
OPEN PROBLEM – RELYING ON SAST VENDOR’S SCORES

Future:

• CWE ⇔ TTP mapping?

Let me know if you’ve 
solved this!



SCA – Exploited in the wild (KEV)

SISC – Critical secrets

SCA – Likely to be exploited (EPSS)

Everything else

UNIFIED RISK PRIORITIZATION
SIMPLIFIED MODEL



META FEEDBACK LOOP



SHIFTING LEFT – 6 BUCKETS OF RISK

Prevented

Secure by 
design & 
default

Paved paths

Found 
Automatically

SCA, SAST

DAST, Fuzzing, 
…

Found 
Manually

pen tests, red 
team

security 
reviews, threat 

modeling

Found 
Externally

Bug Bounty

Unfound Exploited

incidents

Fixing root causes > Fixing symptoms
Hazard elimination > Hazard remediation



META FEEDBACK LOOP

Prevented Found 
Automatically

Found 
Manually

Found 
Externally Unfound Exploited

Program 
Gaps

Adversary 
Intel

Business 
Strategy

Security Strategy

Investments

Any finding indicates a gap further left



QUESTIONS?
Key Takeaways:

• Focus on great DevEx – talk to them!

• Feedback loop design is crucial

• Fix things that matter
• SCA: Consider using EPSS

• SAST: target root causes, not symptoms https://florian.noeding.com

https://florian.noeding.com/


BACKUP SLIDES



ARCHITECTURE

Clients API

Blob 
Store

SCMs

Dash-
board

Scan Engines

Q 1 Worker 1

Q … Worker …

Code Store

Shard 1 Shard …

DB

External

Cloud

Kodiak

Legend

SCM Webhooks
CI/CD
Software Engineers
Security Engineers

Code Search (PoC)

Index



KODIAK INTERNALS

Trigger Scan
• Pull Request 

created / 
updated

Update Code 
Store
• Fetch latest 

code revision

Find Defects
• Execute scan 

engines in 
parallel

Post-process 
Findings
• Denoise findings
• Deduplicate 

findings
• Risk scoring
• ...

Share 
Feedback
• Inline
• Dashboard
• ...



LINKS

• EPSS: https://www.first.org/epss/

• KEV: https://www.cisa.gov/known-exploited-vulnerabilities-catalog

• 6 buckets of risk: http://collingreene.com/6_buckets_of_prodsec.html

• My blog: https://florian.noeding.com

• More about Kodiak: https://blog.developer.adobe.com/project-kodiak-
shifting-application-security-left-at-enterprise-scale-55f5453d1966

https://www.first.org/epss/
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
http://collingreene.com/6_buckets_of_prodsec.html
https://florian.noeding.com/
https://blog.developer.adobe.com/project-kodiak-shifting-application-security-left-at-enterprise-scale-55f5453d1966
https://blog.developer.adobe.com/project-kodiak-shifting-application-security-left-at-enterprise-scale-55f5453d1966

