
Memory Safety for large C/C++
codebases

Strategies and techniques

Florian Noeding
Principal, Security Architect
Adobe
https://florian.noeding.com/

https://florian.noeding.com/

Memory Safety Vulnerabilities

Heartbleed

CVE-2014-0160

Out-of-bounds read in

OpenSSL

Memory Layout

… HB …

src size

malicious payload length

leaked …

Why memory safety?

Largest class of CVEs

affecting C/C++ based
software

Experts struggle to write

safe code in C/C++

C and C++ are ubiquitous Looming regulatory

pressure

United States

National Cyber

Security Strategy

2023 , page 19

To address these challenges, the Administration will shape the long-term security and

resilience of the digital ecosystem, against both today’s threats and tomorrow’s

challenges. We must hold the stewards of our data accountable for the protection of

personal data; drive the development of more secure connected devices; and reshape

laws that govern liability for data losses and harm caused by cybersecurity errors,

software vulnerabilities, and other risks created by software and digital technologies.

We will use Federal purchasing power and grant-making to incentivize security. And

we will explore how the government can stabilize insurance markets against

catastrophic risk to drive better cybersecurity practices and to provide market certainty

when catastrophic events do occur.

https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf

What to protect?
Widely

deployed
software

Code
involved
in n-click
attacks

Handles
untrusted

inputs

Prioritizing Risks in an Abstract Desktop App

User Interface

Core

Framework …

File Format
Parsing &
Decoding

Library ...

...

...

Document, Image, Video, Audio, Network, …

In-memory

representation

of data

(and dynamic
code if

relevant)

Strategy 1: Fuzzing

Fuzzing: coverage guided testing with semi-
random data

Run target with

instrumentation

Save inputs on

crash or new code

coverage

Compile target with

instrumentation
Generate input

Coverage & Sanitizers

Fuzzing Heartbleed: idea

Input Data
0x (empty packet)

Input Data
0x00

type

Input Data
0x18 (heartbeat)

type

Input Data
0x18 0x0000

type payload_length

Input Data
0x18 0x00FF
 → out-of-bounds read
type payload_length

… HB …

src size

malicious payload length

leaked …

Fuzzing Heartbleed: code

How adversaries find
memory safety flaws

Adversaries can use binary fuzzing

Run target with

instrumentation

Save inputs on

crash or new code

coverage

Compile target with

instrumentation
Generate input

Create harness

that interacts with

library

Use debugger to

observe App

Library interaction

Compile harness

Run target with

dynamic

instrumentation

Why fuzzing?

Pros

 No changes to shipped product needed

 For library code: Feels like writing unit tests → developer friendly

 Helps estimate memory safety challenge size

 Adversaries use the same technique

Cons

 Fuzzing applications is much harder than libraries

 Reactive, can’t guarantee absence of memory safety flaws

 Can feel like whack-a-mole to engineers

Strategy 2: Sandboxing

Sandbox – memory isolation

Fault isolation as defense in depth

User Interface

Core

Framework …

File Format
Parsing &
Decoding

Library ...

...

...

File Format
Parsing &
Decoding

Library ...

File operation

Facades RPC / IPC / …

RCE

RCE

Process Isolation

• review Chromium’s model

• Minimize privileges per
process using operating
system controls

Memory Isolation via
transpilation

• review Firefox’s model;
RLBox

• Run library code in WASM
interpreter, providing privilege
and memory isolation

Two common approaches

Why sandboxing?

Pros

 Mitigate memory safety flaws of existing C/C++ code

 Pro-active mechanism with safety guarantees

 Enables focus on sandbox and interface layers for security reviews

Cons

 Performance overhead

 Platform compatibility issues

 Challenges with debugging across sandbox layer, hard to retrofit (process
based sandboxing)

 Interaction heavy code is hard to sandbox

 Introduces new risks at the boundary layer

Strategy 3: Rewriting

Eliminating memory safety flaws by design

User Interface

Core

Framework …

File Format
Parsing &
Decoding

Library ...

...

...
Memory

Safe
Library

Memory Safe Languages:

- Rust, Swift (systems level)

- Go, Java, Python, Ruby, …

Why rewrite?

Pros

 Mitigates memory safety flaws by design

 Developer productivity benefits: modern ecosystem with packages and
additional correctness guarantees

 Enables focus on interface layers and unsafe code for security reviews

Cons

 Depending on language, platform compatibility issues (Swift, not Rust)

 Bi-directional interaction between language boundaries is challenging,
especially when combining C++ and Rust

 Introduces new risks at the boundary layer

 Engineers must learn new paradigms (e.g., Rust’s borrow checker)

Know how to solve Rust C++?

Talk to me, please!

Further Strategies

Tech is relatively easy
-

Driving change is hard

Step 1: Is memory
safety truly a top
business concern?

• Limited engineering bandwidth

• Focus

• Provide relevant data

Step 2: Seek
Partners in
Engineering

• Partner with Staff+ / Principal Engineers

• Earn trust & buy-in for memory safety

• Security: prioritize

• Engineering: technical approach

Step 3: Frame the
conversation in
business terms

• Looming threat of regulation?

• What is your competition doing?

• Productivity benefits of adopting

memory safe languages

• Risks to customers and the business

• Build consensus with leadership

• Dual strategy: bottom-up and top-down

• Evangelize, Evangelize, Evangelize

Step 4: Get it on the
roadmap

• Always keep shipping

• Iterative instead of big-bang rewrites

Step 5: Execute
iteratively

This is a toolkit to create YOUR strategy

A mental model to

prioritize security risks

Strategies to mitigate

the highest risks

One way to drive

organizational change

THANK YOU!
https://florian.noeding.com/

References in appendix of PDF

https://florian.noeding.com/

Appendix

Adversary Model (simplified)

Researchers

• Generally friendly

• Various motivations

Nation States

• Targeted operations

• Hard to predict

eCriminals

• Financially Motivated

• Strategy: repeatable and
scalable exploitation

Prioritization approaches within YOUR threat model

Code Function

• lower n-click
distance

Code with
existing
adversary
interest

• Bug Bounty, zero-
days, ...

Feasibility to
sandbox /
rewrite

• Prefer sandboxing
and rewrites over
fuzzing

Need for
visibility into
risks

• fuzzing to identify
size of risk

Example strategy

1. Focus on file parsing and decoding

libraries

2. Integrate a generic sandbox to mitigate

risks during file parsing and decoding
3. Write new file parsing libraries in Rust

with a C-style interface

4. Prioritize code for fuzzing, where

sandboxing and rewriting is not feasible.

References: Why memory safety?

• 70% of CVEs assigned by Microsoft are due to memory safety flaws

• https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

• 70% of CVEs in Chromium are due to memory safety flaws

• https://www.chromium.org/Home/chromium-security/memory-safety/

• 94% of critical and high CVEs in Mozilla are due to memory safety flaws

• https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/

• United States Cyber Security Strategy

• https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf

• CISA: The Urgent Need for Memory Safety in Software Products

• https://www.cisa.gov/news-events/news/urgent-need-memory-safety-software-products

• CISA: The Case for Memory Safety Roadmaps

• https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf

• Adobe’s response to RFI CISA-2023-0027 (search for memory safety)

• https://downloads.regulations.gov/CISA-2023-0027-0063/attachment_1.pdf

https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.cisa.gov/news-events/news/urgent-need-memory-safety-software-products
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf
https://downloads.regulations.gov/CISA-2023-0027-0063/attachment_1.pdf

References: What to protect?

• Chromium rule of 2

• https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

• The SUX Rule for Safer Code:

• https://kellyshortridge.com/blog/posts/the-sux-rule-for-safer-code/

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md
https://kellyshortridge.com/blog/posts/the-sux-rule-for-safer-code/

References: Fuzzing

• Google’s libFuzzer Tutorial (includes the Heartbleed example)

• https://github.com/google/fuzzing/blob/master/tutorial/libFuzzerTutorial.md

• Fuzzers:

• libFuzzer: https://llvm.org/docs/LibFuzzer.html

• AFLplusplus: https://github.com/AFLplusplus/AFLplusplus

• Hongfuzz: https://github.com/google/honggfuzz

• Binary fuzzing:

• https://medium.com/@kciredor/fuzzing-adobe-reader-for-exploitable-vulns-fun-profit-76edb6a5b012

• https://research.checkpoint.com/2018/50-adobe-cves-in-50-days/

• https://gosecure.ai/blog/2019/07/30/fuzzing-closed-source-pdf-viewers/

• https://bushido-sec.com/index.php/2023/06/25/the-art-of-fuzzing-windows-binaries/

• Trail of Bits Testing Handbook - Fuzzing guide

• https://appsec.guide/docs/fuzzing/

https://github.com/google/fuzzing/blob/master/tutorial/libFuzzerTutorial.md
https://llvm.org/docs/LibFuzzer.html
https://github.com/AFLplusplus/AFLplusplus
https://github.com/google/honggfuzz
https://medium.com/@kciredor/fuzzing-adobe-reader-for-exploitable-vulns-fun-profit-76edb6a5b012
https://research.checkpoint.com/2018/50-adobe-cves-in-50-days/
https://gosecure.ai/blog/2019/07/30/fuzzing-closed-source-pdf-viewers/
https://bushido-sec.com/index.php/2023/06/25/the-art-of-fuzzing-windows-binaries/
https://appsec.guide/docs/fuzzing/

References: Sandboxing

• RLBox (using WASM)

• Website: https://rlbox.dev/ (review references at bottom of page)

• https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/

• https://blog.mozilla.org/attack-and-defense/2021/12/06/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-
95/

• Sandboxing on Linux using seccomp (limit process privileges)

• https://blog.cloudflare.com/sandboxing-in-linux-with-zero-lines-of-code/

https://rlbox.dev/
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/
https://blog.mozilla.org/attack-and-defense/2021/12/06/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-95/
https://blog.mozilla.org/attack-and-defense/2021/12/06/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-95/
https://blog.cloudflare.com/sandboxing-in-linux-with-zero-lines-of-code/

References: Rewriting

• Systems programming languages

• Rust: https://www.rust-lang.org/

• Swift: https://developer.apple.com/swift/

• Hylo (formerly Val): https://www.hylo-lang.org/ (experimental language project supported by Adobe)

• Secure By Desing – Google’s Perspective on Memory Safety https://security.googleblog.com/2024/03/secure-by-design-googles-
perspective-on.html

https://www.rust-lang.org/
https://developer.apple.com/swift/
https://www.hylo-lang.org/
https://security.googleblog.com/2024/03/secure-by-design-googles-perspective-on.html
https://security.googleblog.com/2024/03/secure-by-design-googles-perspective-on.html

	intro
	Slide 1: Memory Safety for large C/C++ codebases
	Slide 2
	Slide 3: Memory Safety Vulnerabilities
	Slide 4: Why memory safety?
	Slide 5: What to protect?
	Slide 6: Prioritizing Risks in an Abstract Desktop App

	strategy: fuzzing
	Slide 7: Strategy 1: Fuzzing
	Slide 8: Fuzzing: coverage guided testing with semi-random data
	Slide 9: Fuzzing Heartbleed: idea
	Slide 10: Fuzzing Heartbleed: code
	Slide 11: How adversaries find memory safety flaws
	Slide 12: Adversaries can use binary fuzzing
	Slide 13: Why fuzzing?

	Strategy: Sandboxing
	Slide 14: Strategy 2: Sandboxing
	Slide 15: Fault isolation as defense in depth
	Slide 16: Two common approaches
	Slide 17: Why sandboxing?

	Strategy: Rewriting
	Slide 18: Strategy 3: Rewriting
	Slide 19: Eliminating memory safety flaws by design
	Slide 20: Why rewrite?
	Slide 21: Further Strategies

	driving change
	Slide 22: Tech is relatively easy - Driving change is hard
	Slide 23: Step 1: Is memory safety truly a top business concern?
	Slide 24: Step 2: Seek Partners in Engineering
	Slide 25: Step 3: Frame the conversation in business terms
	Slide 26: Step 4: Get it on the roadmap
	Slide 27

	end
	Slide 28: This is a toolkit to create YOUR strategy
	Slide 29
	Slide 30: Appendix
	Slide 31: Adversary Model (simplified)
	Slide 32: Prioritization approaches within YOUR threat model
	Slide 33: References: Why memory safety?
	Slide 34: References: What to protect?
	Slide 35: References: Fuzzing
	Slide 36: References: Sandboxing
	Slide 37: References: Rewriting

